
The Case for Binary Rewriting at Runtime for Efficient Implementation of
High-Level Programming Models in HPC

Josef Weidendorfer, Jens Breitbart
Department of Informatics

Technical University of Munich
Munich, Germany

EMail: {Josef.Weidendorfer, j.breitbart}@tum.de

Abstract—Implementations of Parallel Programming Models
are provided either as language extensions, completely new
languages or as a library. The first two options often provides
high productivity, but requires the porting of codes. In contrast,
calls to new libraries can be added more easily, however the use
of abstractions in such programming model implementations
can have high runtime overhead. In both cases, the mentioned
drawbacks often hinder the adaptation of novel programming
models for large existing codes.

To combine the advantages of compiler analysis with the
composability of pure libraries towards more efficient pro-
gramming model implementations, in this paper, we propose a
low level API for programmer controlled binary rewriting at
runtime. This can be used by programming models provided
as libraries to efficiently integrate their abstractions with
application code. It enables incremental adoption for existing
codes as well as favoring input-dependent optimization strate-
gies yet providing similar performance as language extension
approaches. We show first promising experiences.

Keywords-High Performance Computing; Parallel Program-
ming Models; Dynamic Optimizations;

I. INTRODUCTION

Software development in High Performance Computing
is different from program development in other fields due
high requirements in application scalability with compu-
tations, that typically require regular synchronization and
communication. As a result, people invest a lot of effort in
optimizing their applications and thus, they expect parallel
programming models to allow tuning also on the lower
levels. Furthermore, languages allowing for compiling to
native code are preferred (e.g. C++ or Fortran) in con-
trast to languages using managed environments (such as
Python or Java). Even though it may provide productivity
advantages, the overhead of just-in-time compilation and a
managed runtime is expected to contradict the needs of HPC
applications. Another aspect driving the characteristics of
HPC programming environments is that applications often
have a legacy burden. Quite some simulation codes still are
based on Fortran-77 code from the 1980s. New application-
level features are added incrementally. The result is that
the Message Passing Interface (MPI) [1] is the most-used
parallel programming model in HPC and is both low-level
and easy to compose with 3rd-party libraries. Using message

passing as paradigm, programmers have to manage data
distribution themselves which is especially complex if load
balancing has to be done.

Proposals for HPC programming models providing higher
productivity typically take the form of either language
extensions, completely new languages or libraries. For the
rest of this paper we treat new languages identically to
language extensions, as we do not expect there to be any
important differences for this work. Figure 1 visualizes the
two approaches. The language approach requires porting.
New abstractions have to be added as extensions to the
language. In contrast, multiple new abstractions introduced
in libraries usually can be added incrementally to existing
code, often resulting in a higher number of abstractions
compared to the language approach. In this paper we propose
a low level API for programmer controlled binary rewriting
at runtime to reduce the overhead of these abstractions and
therefor mostly focus on the library approach for the rest of
this paper.

With our low level API, the programmer can re-generate
a new version of any function by providing its function
pointer at runtime. A pointer to the new function is returned
which can be used as drop-in replacement of the original
function. In contrast to the original function, however, the
new function typically is optimized based on the available
runtime information. For example, a generic stencil imple-
mentation could be optimized for a specific stencil type.
This way, the developer using the stencil function can parse
any arbitrary stencil pattern at runtime, yet the computa-
tion provides (almost) the same performance of a function
manually optimized for a specific pattern. For configuration
of the rewriting process, we rely on the ABI (Application
Binary Interface) of the system. We present a prototype
able to decode and rewrite a subset of the 64-bit Intel x86
architecture. To the best of our knowledge, a minimalistic
flexible API for doing transformations at the binary level was
not proposed before. All existing approaches involving code
generation (see Section VII) expose higher level interfaces
towards specific needs, if usable within application code at
all. They do not provide code generation itself as a feature
to be used by the programmer.

Figure 1. Different ways to add a new concept/abstraction to the programming model used. Top: Language approach needing porting, all concepts must
be added to one language. Bottom: Library approach allowing composition without porting, however often with slower performance.

The rest of the paper is structured as follows. First,
we revisit existing efficient solutions used to integrate new
programming models in existing languages in the next
section. In Section III, we describe our requirements for
the rewriting API and the API itself together with the
rewriting strategy being used. This includes a discussion of
handling jumps. Section IV shortly describes our current
prototype. In Section V, we show our first experiences with
the prototype using a 2D stencil code. In this example,
we start with a generic stencil computation taking stencil
parameters (number of points, offsets, coefficients) as input.
We compare the performance of a rewritten version special-
ized for a given stencil form with a manual implementation
of that computation. Section VI gives a brief description
on how binary rewriting could also be beneficial for new
programming languages. After presenting related work, we
finish with a conclusion of our findings.

II. EFFICIENT SOLUTIONS INTEGRATING NEW
PROGRAMMING MODELS AS LIBRARIES

In this section we describe generic techniques that can be
used to optimize the performance of programming models
that are implemented as libraries.

In C++, a library can be provided in header files to be
inlined by the compiler and also make heavy use of the
C++ template features. An important technique here are so-
called Expression Templates [2]: Application data types are
wrapped by classes (often called proxy classes) which do
not directly execute operations on the data but collect the
operations into expressions at runtime for later execution
in an optimized fashion. This can be especially beneficial to
minimize memory accesses by e.g. doing multiple operations
on one element while it is still in a register. For example,

Blitz++ [3] and Boost uBLAS1 are libraries using this fea-
ture. While this technique is restricted to C++, programmers
only are allowed to use operations predefined by the library
which has to be available at source-code level in header files.
As such, vendor-optimized commercial math libraries are out
of reach (such as Intel MKL [4]). Furthermore, proxy classes
cannot be 100% identical to existing types, which can result
in unexpected compiler errors.

CUDA [5] and OpenCL [6] also rely on a library ap-
proach, but defer part of the compilation to runtime. This
has another benefit: program input can be taken into account,
allowing generating and running code specialized for given
data. However, being quite low level and specific to the
accelerator hardware, tuning on that level is done rarely
by application programmers. An interesting approach was
taken by Intel ABB (Array Building Blocks) [7], originally
developed in academia and passed on to a startup (Rapid
Mind) later bought by Intel. ABB provides a second version
of various C++ keywords to allow programmers to write
code which captures specific instances of generic code at
runtime for later execution. However, ABB did not trigger
enough interest due to being difficult to learn. It got aban-
doned by Intel as commercial product. Techniques involving
re-compilation at runtime may simply invoke a regular
compiler. For example, the compilation suite LLVM [8] can
be linked as library and be called for generating specialized
code. This works especially well for application specific
generators [9], but also can be done generically. Depending
on optimization passes to be used, one either has to preserve
source code or intermediate code (e.g. using LLVM-IR).
This is typically not the case for vendor-optimized commer-

1http://www.boost.org/doc/libs/1 60 0/libs/numeric/ublas/doc/index.
html

cial math libraries and therefor, they cannot be integrated
in this approach. Further, even for open-source projects,
libraries may be readily available at a compute center site
only in binary form, making it cumbersome for programmers
to use techniques requiring source.

Due to the stated drawbacks, we came up with the solution
we propose here.

III. BINARY CODE TRANSFORMATION

A. Expected Benefits

Our low-level rewriter API allows programming model
implementations as libraries. To get rid of abstraction over-
head such as huge amounts of function calls and indirections,
rewriting can be used. Further, rewriting can be used to
deduce values that are constant during runtime, e.g. data
structure indices that depend on data distribution are not
known at compiletime if the data distribution depends on
runtime information such as the number of systems used for
the computation. However, once the application has started
it is possible to optimize such index computations.

As the result of a rewriting step itself can be used as
input for further rewriting, this approach is composable. For
example, a generic code generator may take pieces of binary
code as input. These pieces themselves can be the outcome
of a rewriting step, but also the code generator can be
rewritten to be specialized for given input. Thus, we expect
this approach to be usable for making implementations of
(parallel) programming models easier composable.

B. Rewriting by Tracing

The rewriting process essentially emulates a call to the
function. This requires that a parameter setting is provided.
During emulation, a new version is generated (“captured”),
taking rewriting configuration into account. For example, a
given parameter used in the emulation can be specified to
be assumed to be a known, constant value for the newly
generated version. Then, all operations using this parameter
are rewritten to use the constant instead. Operations only
involving constants just are emulated without generating any
instruction, resulting in automatic constant propagation. For
such a configuration, our rewriter works as specializer, also
called partial evaluation.

Other rewriting features/configurations may involve func-
tion inlining, configure loop unrolling, or injection of
handler calls (which even can be inlined) when specific
operations such as memory accesses are detected during
emulation.

C. Configuration

For configuration of the rewriting process, we rely on the
ABI (Application Binary Interface) of the system. Among
others, the ABI specifies register use and parameter passing
at function call boundaries. Every compiler producing native
code has to comply to this specification for linking (also

to shared library functions at runtime) to work. By relating
rewriting configuration to actions at function boundaries, the
abstractions of the enforced ABI calling convention can be
used to make the rewriter configuration itself architecture
independent.

As we describe below, the rewriting can visit multiple
functions during the rewriting process. Thus, a rewriter
configuration provides the options for functions given their
start address (this includes the function to rewritten itself).

• Is a given parameter assumed to be a known, fixed value
in the rewritten result (defaulting to unknown)?

• Is a given function to be inlined when called?
• Are values as results of operations to be marked as un-

known (this avoids loop unrolling, as described later)?
• How many specialized versions of the same original

piece of code in a given function should be generated?
This list may be extended in the future as needed.

D. Requirements

The main objective of the API is to allow applications
to become faster by generating smaller and faster code
as replacement for existing functions, using information
available at runtime. To this end, both inlining as well as
specialization or partial evaluation are effective techniques.
The first removes the overhead of jumps and function
prologues/epilogues which are required by the system ABI
to be able to do calls in the first place, using a corresponding
calling convention. The second allows to generate variants
for later execution in specific contexts where input data to
the function are known to have fixed values. For exam-
ple, this allows to reduce parametrized generic versions to
specific needs, replacing variables with their known values
in operations, removing branches with known outcome,
or removing indirections when references are known. Any
computation using values specified as being known can be
removed and pre-computed already when the new variant is
generated. The new variant therefore should consist of much
less code and execute faster.

Partial evaluation works when input data is known. This
often may not be known at first, but statistical information
can be collected by profiling. For example, it may be
observed that a parameter to a function often is 42. In this
case, a specific variant can be generated which is called after
a check for the parameter actually being 42. Otherwise, the
original function should be executed. This concept easily
can be extended to cover various statistical knowledge of
the dynamic program flow and should be supported. We note
that with the stated requirements, we can start from functions
with built-in profiling functionality, and variant generation
can remove profiling from the generic version. However, we
may not be able to influence the original functions, and thus,
it is convenient to inject calls into own profiling functions
e.g. at function begin or end. Other interesting points for
callbacks include memory accesses. By generating function

i n t f unc (i n t a , i n t b) { . . . }
t y p e d e f i n t (∗ f u n c t) (i n t , i n t) ;
f u n c t newfunc ;

i n t main () {
/ / c a l l o r i g i n a l f u n c t i o n
i n t x = func (1 , 2) ;
/ / r e w r i t e f u n c
. . . / / c o n f i g u r e r e w r i t e r
newfunc = (f u n c t) b r e w r e w r i t e (

rConf , func , 1 , 2) ;
/ / c a l l r e w r i t t e n v e r s i o n
i n t x2 = (∗ newfunc) (1 , 2) ;
. . .

}

Figure 2. Basic usage of BREW.

variants with redirected memory accesses, different layout
of data structures can be supported. Further, we may want
to detect if a call goes to a function with behavior known
to us, and replace a generic behavior with a specific one.

For the presentation in this paper, we restrict ourself to the
first mentioned use cases: inlining and partial evaluation. We
expect the further mentioned features to be straight-forward
extensions.

E. Rewriting Strategy and Proposed Interface

New variants of a function should be usable as simply
as possible. To this end, we keep the function signature
the same as the original function, as this allows the new
variant to be used as drop-in replacement, even though
some parameters may never be accessed as result of partial
evaluation. This way, if a programmer knows how to call a
function, he also knows how to call its replacement.

In the following, shown code always is in C. Our proposed
API uses the prefix brew_ (for Binary REWriting). Now,
let us assume a function func which takes two integers
as parameters and returns an integer. We explicitly declare
its function signature with a typedef. The configuration
of the rewriter is maintained in a structure rConf. The
generator API function (called brew_rewrite) takes as
parameters the configuration, the function pointer of the
original function, as well as all parameters of a original
function. Generating a new variant of function myFunc is
shown in Figure 2.

We do partial evaluation by tracing the execution of the
original function instruction by instruction. In each step,
either the original instruction, a modified version, or nothing
may be passed on as the next instruction to be appended
to the newly generated variant. For every variable value
used during execution, we maintain a flag for whether
this value is assumed to be known or unknown. If it is

known, we maintain the actual value also during tracing
by emulating every instruction touching the value. Now,
if an instruction only uses unknown values, we pass the
instruction unmodified. If a value is known, we can replace
the corresponding operand of the instruction pointing to the
location where the value resides with the actual value itself
as immediate operand, and append this modified instruction
to the generated code. However, if all input to the instruction
is known and thus also its result, there is no need to pass
the instruction on at all. Instead, we only have to emulate
the instruction for obtaining the known result value. The
actual value can be used as immediate constant whenever a
following instruction accesses the value.

As one location for storing state (being a register or a
memory location) can only hold one value, the known-state
of that value can also be stored together with the location.
For locations not used yet, we mark its content as invalid.
At tracing start, we want to configure which input data is
assumed to be known. Input data are either values passed as
function parameters or values fetched from memory during
execution. Thus, the user of the API should be able to
specify the known-state of function parameters and memory
locations. For both, we default to unknown state and provide
API functions allowing to annotate function parameters and
memory ranges to be assumed to be known. Further, if a
value is used as pointer, we want to be able to annotate this
pointer as pointing to known data. This way, complex data
structures using indirections easily can be marked as being
completely known.

To specify known state, we use the C enum values
BREW_KNOWN (and as extension for pointers to known
state BREW_PTR_TOKNOWN). In the example code shown
in Figure 3, rewriting is configured to assume parameter 1
to be known, as well as some memory range from start to
end. If a parameter is specified as being known, the concrete
values are taken from the parameters of brew_rewrite
mirroring the original parameters. Here, the known param-
eter 1 is set to 42. When calling the rewritten function, the
first parameter actually is ignored, as the new variant has
replaced every access to parameter one with value 42.

The above description of function tracing should be
enough to understand the rewriting process for functions
consisting of a series of instructions which do not change
control flow. However, before we can pass the ret instruc-
tion to the newly generated function, we need to check if
the state of the return value is set to be known. If so, we
need to generate an explicit load of the return value location
as specified by the ABI with the immediate value (for 64-bit
x86, this is RAX for integers).

If a call to another function with a series of instructions
is detected by tracing, currently we always assume that we
should inline the function. To keep the call, we would need
to know the effect of the function regarding changes of
known-state and concrete values if known. If configuration

/ / s e t c o n f i g and r e w r i t e f u n c
b r e w i n i t C o n f (rConf) ;
b r e w s e t p a r (rConf , 1 , BREW KNOWN) ;
brew setmem (rConf ,

s t a r t , end ,BREW KNOWN) ;
newfunc = (f u n c t) b r e w r e w r i t e (

rConf , func , 42 , 2) ;

/ / i g n o r e s v a l u e 1
i n t x2 = (∗ newfunc) (1 , 2) ;

Figure 3. Declaring known values for specialization.

asks to not inline a function, we currently simply signal a
failure. This is left as future work2. For inlining, we simply
can go on with the first instruction in the called function
and return back to the calling site on a ret instruction. To
this end, we maintain a shadow stack remembering traced
call instructions and corresponding return addresses.

F. Jump Processing

In the following, we describe our tracing strategy when
detecting jumps. For unconditional jumps, we can proceed
as with calls without changes to the shadow stack. For jumps
to multiple possible target addresses (both conditional jumps
as well as unknown indirect jumps), we need to distinguish
whether the jump condition (or jump target) is marked as
being known or unknown. If known, the actual value of
the condition (or jump target) can be checked, and we can
proceed as with unconditional jumps. We note that we also
maintain the known-state for the various condition flags (e.g.
zero or carry flag), being set with most x86 instructions
depending on their result value.

Without discussing unknown jump targets, a given class
of loops now can already be handled. That is, loops starting
from a known value with a loop condition only involving
constant values. For example, for a loop goes from 1 to
42, let us assume the the loop counter is stored in some
register. First, the known constant value 1 will be written to
this register. Whenever the register with the loop counter is
accessed by an instruction, the rewriting process will replace
a reference to the register with the actual value 1. At some
point, the loop counter will be incremented and following,
a jump back to the beginning of the loop is done. Both
the condition check being known and the jump back do not
result in any instruction passed to generated code. Instead,
the loop body will be traced a second time with the loop
counter set to known value 2. This repeats until the loop
counter is 42, resulting in complete unrolling of the loop.
This behavior actually is nice for small loops. However,

2We think that we can do an isolated tracing of the called function to
detect its effects regarding known values. If the effects become too complex,
we always can signal failure.

for larger loops huge functions get generated. Our current
solution is for functions to be able to configure that every
conditional jump (even if known) should be treated as being
unknown. As we inline other functions, this configuration
may change during tracing, but is restored when returning
to the previous function.

Finally, what should happen on detecting jumps to un-
known targets? As the result is unknown at rewriting time,
we need to generate code for each possible execution path,
preserving the jump instruction. We currently signal failure
if we trace an indirect unknown jump. This is future work.
To handle multiple paths yet to traced, we keep a queue of
yet-to-be-rewritten basic blocks as well as a list of already
generated blocks. When finishing a basic block with two
possible following code paths, we are free to choose the
next block to process. Preferring the path according to some
prediction strategy is useful as the generated code for the
basic block processed next will simply follow the code of the
previous block, unless the basic block was already processed
before.

The described strategy sounds straight-forward: if a path
ends with a jump to an already processed block, we can
stop and go to the next unprocessed block in the yet-to-be-
rewritten queue. At some point, all reachable basic blocks
of a function are processed and we finish. However, the
correctness of our tracing strategy crucially depends on
the known-state of values. Depending on whether a value
is (1) marked as known or unknown and (2) its value if
known, generated code will be different. For example, when
a reference to a location with a known value is an operand
in an instruction, we replace the reference with the value,
generating code dependent on the known-state. Further,
known values decide about control flow. Therefore, we also
have to maintain known-state of values when processing
basic blocks in arbitrary order. To this end, we need to add
the facility to save and restore the state of all known-ness
as well as the values themselves if known. We call this the
known-world state in the following. We save this state when
the code path at the end of a traced block is diverging, that is
at conditional jumps with multiple possible following code
paths. We relate the saved known-world state to the created
yet-to-be-rewritten blocks. Whenever we process a new basic
block, we first restore the corresponding known-world state
before starting tracing.

After processing a basic block, the code path may go on
at an already processed basic block. However, the previous
processing may have used another known-world state for
tracing that block. As mentioned before, tracing the same
code with different known-world state can result in different
code being generated. Therefore, we have to extend our
strategy to identify yet-to-be-rewritten blocks not just by
block start address, but also by an unique identifier for
different known-world states. To overcome code explosion,
we can produce compensation code for migrating between

world states as long as there are only values changing from
being known to unknown. For each such value, we have to
generate code to load the corresponding locations with their
known values.

The described processing cannot prohibit complete un-
rolling of loops even if branch conditions are unknown
whenever the known-world state changes among loop in-
terations. However, we can restrict the number of generated
blocks from the same original block by reducing known-
world state to one of an already translated block. For that,
if a given configuration threshold is reached, we search for
possible migrations. If none is possible (no state with values
changing from known to unknown), we search for states
with same known-ness, but different known fixed values
and migrate to a state where corresponding values become
unknown (this algorithm always terminates at a state with
all values unknown).

Yet, we want to have a simple way to avoid any unrolling
of loops. For this case, we force every value created by an
operation in a function to become unknown. This of course
makes every branch condition be unknown (conditions are
not passed as parameters). We note that called functions still
get specialized, either due to constant values directly passed
through as parameter, or by a configuration for the called
function setting a parameter to be known.

G. Summary of Rewriting Steps

When rewriting of a function is requested, the following
steps are done:

• Put the first basic block onto the yet-to-be-rewritten
queue, together with a known-world state reflecting
input parameter configuration.

• Take the next basic block to rewrite, decode it, load
the corresponding known-world state and start trac-
ing. Captured instructions are kept in decoded form.
We trace over jumps and calls with known targets.
Calls configured to not be inlined are kept, generating
compensation code to make registers “unknown” which
are parameters according to the ABI. For tracing after
the call returns, we assume all caller-saved registers to
be dead/unkwown, while all callee-save registers keep
their known state.

• After tracing a basic block, succeeding basic blocks
are determined. If not yet translated, they are added
to the yet-to-be-rewritten queue. Basic blocks starting
at same address are treated to be different when their
known-world state differs. If a threshold for different
variants of translations starting at same address is
reached, we try to migrate to the known-world state
of an existing translation. If this is not possible, we
determine the translating with the smallest difference
and set values known but different to be unknown. In all
cases, compensation code for migration of the known-
world state may be generated.

• When all blocks are rewritten, we run optimization
passes over the newly generated, captured blocks.

• Determination of the best order of generated blocks for
the final rewritten code.

• Generation of binary code from captured blocks. Unless
we fall-through from the previously generated code, we
leave some space between blocks to allow for required
jump instructions at the end.

• Do relocation of all need jumps, given start addresses
from the previous step.

At all times, it is possible that we reach a situation that
cannot be handled. For example, when buffers run out of
space (there is a configuration for maximum size), when
instructions cannot be decoded, or when the machine code
for an instruction to generate is unknown. This will result in
a failure of the rewriting process, but it is not catastrophic.
It simply means that the user of the rewriter API has to use
the original version of the function he wanted to rewrite.
This robustness is needed as we may follow arbitrary code
paths.

IV. PROTOTYPE

Our prototype is able to decode and rewrite a subset of
the 64-bit Intel x86 architecture. It does not depend on other
libraries. One can imagine that the rewriting step should
employ many standard compiler optimizations, and thus,
e.g. building on top of LLVM is winning goal (involving
translation of binary code to LLVM-IR and back). We note
that optimization passes in LLVM are written to be used in
standard compilers. It may need modifications for them to be
able to take programmer knowledge as rewriter configuration
into account.

The prototype does all rewriting steps as described.
However, there currently are no optimization passes im-
plemented. Even without, the prototype is already quite
capable as shown below. We do not expect that the rewriting
step has to include a lot of standard compiler optimizations
itself to be useful. We note that the rewriter already should
take highly-optimized code as input. In this sense, it is a
delayed step complementing static compilation to produce
the final code for execution. The most important aspect is
well working inlining, getting rid of standard prologues and
epilogs enforced by the ABI. We note that this does not need
a register re-allocation but only register renaming. However,
avoiding register spills to the stack is important when free
register spaces becomes available due to specialization.
The mentioned optimizations are future work. Nevertheless,
sophisticated optimization passes in the rewriter are useful:
e.g. we plan to implement a simple greedy vectorization
pass which may take programmer knowledge and runtime
information provided via rewriter configuration into account,
guiding the search for best replacement of scalar operations
with vector instructions. We note that such optimization
passes can be much simpler than corresponding compiler

passes, as being tailored to specific cases supported by
runtime information.

Once our prototype covers an acceptable portion of 64-bit
x86 instructions, we will make it open-source on GitHub.

V. FIRST EXPERIENCES

If we assume a programming model given as library
implementation, there must be functions implementing the
abstractions from the programming model resulting in code
that does communication, computation and memory accesses
as needed. For useful abstractions and real code, we argue
that there always have to be functions to be called in inner-
most loops of programmer supplied kernels. If the model
would have been given as language extensions, the compiler
would optimize away corresponding overhead. However, this
is not possible for a library implementation. For example,
DASH [10] (a C++ library providing a PGAS programming
model) must translate between global and local address
space for every call to operator[] on distributed data
structures. As a result, using this operator is not recom-
mended in inner-most loops, even if the developers know
the data is local to the calling node. The runtime checks if
the data is actually local result in high overhead.

A. Specializing Generic Stencil Computation

To show our first experiences with programmer controlled
binary rewriting, we present results from our prototype
for specializing a generic 2d stencil computation. This has
similar characteristics to the PGAS use case mentioned: the
stencil application is used in the inner-most loop with the
generic function having quite some overhead. The code in
Figure 4 shows the definition of a 5-point stencil using a
corresponding data structure. The stencil takes the average
of neighboring points and subtracts the original value at a
given position. Further, Figure 4 shows the generic code
returning an updated value for applying an arbitrary stencil
as well as an example of traversing a 2d matrix calling this
generic stencil function.

Running 1000 iterations on a 5002 matrix (on a laptop
with an Intel Core i7-3740QM with 2.7 GHz and 6 MB L3
cache, using Ubuntu 15.10 with gcc 5.1 and “-O2” compile
flag), this requires 2.00s (We note that the space traversed
for the 2 matrices is 4 MB, fitting into L3). Now, in contrast,
directly writing code for the stencil, the computation only
takes 0.74s, ie. 37% of original runtime. This is expected and
shows the benefit of information already known at compile
time.

Specializing the apply function and using the rewritten
version is shown in Figure 5.

We configure the rewriter to assume both the matrix side
length and the stencil to be fixed. For the latter, we mark
the third parameter to be a pointer to known fixed data
(this applies recursively if pointers would have been used

s t r u c t P { double f ; i n t dx , dy ; } ;
s t r u c t S { i n t ps ; s t r u c t P p [] ; } ;

s t r u c t S s5 = {5 ,{{0 ,0 , −1 .0} ,{ −1 ,0 , .25} ,
{1 , 0 , . 2 5} ,{0 , −1 , . 2 5} ,{0 , 1 , . 2 5}}} ;

double a p p l y (double ∗m, i n t xs ,
s t r u c t S∗ s) {

double v = 0 . 0 ;
f o r (i n t i =0 ; i<s−>ps ; i ++) {

s t r u c t P∗ p = s−>p + i ;
v += p−>f ∗ m[p−>dx + xs ∗p−>dy] ;

}
re turn v ;

}

i n t main () {
double m1[ys] [xs] , m2[ys] [xs] ;
. . .
f o r (y =1; y<ys−1;y ++)

f o r (x =1; x<xs−1;x ++)
m2[y] [x] = a p p l y (&m1[y] [x] , xs ,& s5) ;

}

Figure 4. Generic 2d stencil computation code with the stencil given as
a data structure.

t y p e d e f double
(∗ a p p l y t) (double ∗ , i n t , s t r u c t S ∗) ;

. . .
b r e w s e t p a r (rConf , 2 , BREW KNOWN) ;
b r e w s e t p a r (rConf , 3 , BREW PTR TOKNOWN) ;
a p p l y t app2 = (a p p l y t) b r e w r e w r i t e (

rConf , apply , 0 , xs , &s5) ;
. . .
f o r (y =1; y<ys−1;y ++)

f o r (x =1; x<xs−1;x ++)
m2[y] [x] = (∗ app2)(&m1[y] [x] , xs ,& s5) ;

Figure 5. Specializing the stencil update function and its usage.

in struct S). The code for app2, generated at runtime
with our rewriter, is given in Figure 6.

It is easy to recognize the 5 points in the stencil in
the output. Coefficients from the stencil data structure are
referenced directly, e.g. seen in i-01 referencing a double
value at address 0x615100. The known distance between
rows (specified as second parameter) can be seen as constant
displacement in i-13. Using the specialized version, our
computation takes 0.88s, only 44% of the generic version
and 18% slower than the manually written stencil.

i-00: pxor %xmm0,%xmm0
i-01: movsd (%rdi),%mm1
i-02: mulsd 0x615100,%mm1
i-03: addsd %mm1,%mm0
i-04: movsd -0x8(%rdi),%mm1
i-05: mulsd 0x615110,%mm1
i-06: addsd %mm1,%mm0
i-07: movsd 0x8(%rdi),%mm1
i-08: mulsd 0x615120,%mm1
i-09: addsd %mm1,%mm0
i-10: movsd -0x1f50(%rdi),%mm1
i-11: mulsd 0x615130,%mm1
i-12: addsd %mm1,%mm0
i-13: movsd 0x1f50(%rdi),%mm1
i-14: mulsd 0x615140,%mm1
i-15: addsd %mm1,%mm0
i-16: ret

Figure 6. Resulting assembly code computing one stencil update (for the
5-point 2d stencil shown before).

B. Optimizations

Analysis of the generated code shows that some optimiza-
tions are missed. First, the rewriter does not see that four
coefficients of the stencil are the same. A compiler would
transform the expression to remove corresponding loads and
do less multiplications. Second, as the appy function is
specialized in isolation, optimizations such as caching values
in registers when reused in neighborhood computations, and
similar important, vectorization of multiple stencil applica-
tions cannot be done.

Regarding the first missed optimization, we can rewrite
the generic version of the stencil to group points with
same coefficients, which needs to be reflected in the stencil
structure. We note that this keeps the abstraction, providing
arbitrary stencil forms at runtime. However, the code is
written knowing the behavior of the rewriter. We think this
is fine as we expect that often, the code subject for rewriting
will not come the application programmer but from a library
tuned for being used together with binary rewriting. We just
show how the structure used in a “grouped” version looks
like:

s t r u c t P { i n t dx , dy ; } ;
s t r u c t G { double f ;

i n t ps ; s t r u c t P p [] ; }
s t r u c t S { i n t gs ; s t r u c t G p [] ; } ;

Now, the generic version has another loop going over the
groups, and not surprisingly, using the generic version on
the same 5-point stencil with the 1000 iterations on 5002

matrices actually gets slowed down to 2.21s, around 10%
slower than the original version. However, the rewritten
version improved from 0.88s to 0.74s, exactly as fast as the

manual version. Looking at the disassembly of the rewritten
single stencil computation, it is even better than the manual
version which did not incorporate the knowledge of the
matrix side length.

The other missed optimizations actually take the calling
site of the stencil computation into account. Reuse of values
and vectorization across stencil updates is important but
not possible if the stencil update code is part of another
compilation unit. We assume this situation with the code
running for 0.74s, which uses function pointers to call into
each single stencil computation. If we avoid the function
pointer, and provide the manual stencil code in the same
compilation unit, the runtime is reduced from 0.74 to 0.48s.
Thus, it seems to be beneficial to apply our rewriter to
a complete matrix sweep (which still can use indirect
function calls which they get removed by specialization).
Our prototype can be configured to avoid complete loop
unrolling which definitely is needed here. However, we
currently miss optimization passes for the rewritten code to
be able to get better. With controlled unrolling (such as four-
times), we imagine that it should be quite simple to write
optimization passes for straight-line code (ie. a basic block)
which do (1) instruction reordering removing redundant
loads, (2) vectorization by replacing scalar instruction with
vector versions with same semantics. This is future work.

C. Failed Approaches to Avoid Loop Unrolling

Earlier in this paper, we mentioned our strategy from
keeping the rewriter to do complete loop unrolling. We
have a configuration per function which states that each
newly created value should be treated as unknown (not
touching values passed in as parameters). This is a brute
force approach which actually destroys any possibilities for
specialization. However, it does not remove chances for
specialization for nested called functions which get inlined.

In the stencil code above, the loop for a matrix sweep
starts at index 1, being a constant. The loop unrolling is
enforced due to this constant value being incremented to
become 2 for the second loop body, triggering another ver-
sion to be created (the known world state changes). Our first
approach focused on the idea that we just need to mark the
loop counter value as being unknown. This can be done by
introducing a function int makeDynamic(int) which
just returns its parameter. The rewriter can detect the call
to this specific function, and mark the value passed in to
always become unknown. This way, the loop for a matrix
sweep can be rewritten as follows:

f o r (y=makeDynamic (1) ; y<ys−1;y ++)
f o r (x=makeDynamic (1) ; x<xs−1;x ++)
m2[y] [x] = a p p l y (&m1[y] [x] , xs ,& s5) ;

However, the compiler is allowed to do arbitrary trans-
formations of the iterator space, as long as the order of
calls to apply is observed, given that we force apply

not to get inlined by the compiler in the first place. When
we tried above version, we saw that the compiler created
another loop count variable still starting at 0, and where the
original loop count was required, it added the value returned
from makeDynamic before. Thus, there still was a constant
known value which changed in each iteration, resulting in
complete unrolling again.

This effect is interesting for two aspects: we never should
assume that generated binary code has much relation to the
source, unless explicitly enforced by the ABI or language
specification. By making a function visible to the linker and
prohibiting its inlining in C, the compiler cannot assume
specific semantics and has to keep the order of calling
the function. The second aspect is related: calling non-
inlined functions can actively prohibit optimizations which
a compiler otherwise would do. This means that by making
binary code better suited to be input to our rewriter, code
quality will be degraded. Our rewriter needs to compensate
this effect to be useful.

VI. BINARY REWRITING FOR NEW LANGUAGES

So far we concentrated only on libraries providing an ad-
ditional programming model, however our approach can also
be useful for new languages as we think it is not possible
to eliminate all abstractions at runtime. For example, the
PGAS language Chapel [11] uses so called domain maps
to describe the distribution of data among systems. The
distribution is typically not changed during runtime or only
at certain points (e.g. load balancing). Binary specialization
can be used to optimize accesses using the domain map and a
runtime system could trigger a new specialization whenever
the domain map is changed. That way, such changes would
be transparent to the user. We expect that there are further
possibilities to use our approach in new languages, but
research is required to identify these.

VII. RELATED WORK

There are a lot of tools using code generation internally:
just-in-time compilers for various languages and byte-code
specifications (JVM, .NET), ISA translators for VMs such as
QEmu [12], binary instrumentors such as Valgrind [13], Intel
Pin [14]. These tools expose a higher level interface towards
specific needs. DynInst [15] is more similar to our approach
and can do static binary rewriting. However, it is tailored
for instrumentation needs of performance analysis tools.
Dynamo [16] is a transparent dynamic optimizer rewriting
binary code. It should be possible for the mentioned projects
to build a re-implementation on top of our binary rewriter.
On the other hand, our rewriter is more than a code gener-
ation backend for a given architecture found in a compiler.

There are a few proposals for enabling dynamic code
generation very similar to our approach. In [17], Grant et
al. propose an extension of C using annotations (DyC)
allowing parts of the C code to be transfered to runtime for

allowing deferred specialization. However, DyC specializes
C, not binary code. DeGoal [18] is a recent proposal to
integrate dynamic code generators at runtime. It provides
programmers a specification language for controlling what
the generator should do, including C code “compilettes” to
be used by the generator as precompiled building blocks.
Our approach actually tries to be a minimalisic version of
this. However, we allow arbitrary compiled functions to be
used as building blocks. Cling3 is a C++ interpreter using the
LLVM infrastructure. It could provide similar feature as our
binary rewriter, however parsing C++ is time consuming and
it is unclear if it could provide the same level of performance
as the binary rewriter.

There are quite some language specific approaches to
dynamic code generation. A lot of scripting languages allow
execution of code built from strings at runtime, and being
evaluated (often named eval). Examples are Python and
JavaScript. The just-in-time compilation usually produces
native code if executed often. Using this to include runtime
information for better performance is called Multi-Staging,
proposed e.g. for Scala in [19]. In [20], the authors pro-
pose AnyDSL, a simple extension of a systems language
(syntax taken from RUST) allowing programmers to specify
where code should be specialized for better performance.
They use this for abstractions supporting easy programming
of heterogeous systems. SEJITS [21] is a project from
Berkeley proposing specialization for selected functions in
Python, replacing these with dynamically generated native
code automatically at runtime. This way, the projects want
close the “productivity gap” for programming HPC systems.
Graal [22] is an new API proposed for Java for controlling
dynamic compilation. It allows programmers to specify meta
information to guide low-level optimizations in an upcoming
JVM. All the works mentioned are related to a programming
language. Our approach is language agnostic, working at the
binary level.

VIII. CONCLUSION

In this paper, we presented our idea of a low-level API
for application programmers to transform binary code at
runtime. We discussed the benefits of this technique and
our vision for using it to compose higher-level programming
models for HPC. First experiences with a prototype show
that the incremental approach taken by the API is promising:
when rewriting fails, using the original function always is
possible. Further, rewriting makes sense only for perfor-
mance sensitive hot code paths. Thus, the current prototype
is already useful even without complete coverage of the x86
ISA and sophisticated optimization passes. Any extensions
of the prototype can be guided by the requirements of
performance critical hotspots in selected HPC applications
as well as implementations of abstractions built on top of it.

3https://root.cern.ch/cling

An important issue is support for debugging rewritten code
which may rely on re-generation of debug information on
the fly.

As next step, we will implement register renaming for
improved inlining of small functions and deep call chains.
We plan to use our prototype for enabling optimizations in
HPC codes using a library with PGAS abstractions such as
iteration through global address space. We want to use our
API to detect remote memory accesses in arbitrary code,
triggering preloading from remote nodes per RDMA, and
use a second rewritten version of the same code which
redirects memory access to the local pre-loaded data.

REFERENCES

[1] M. P. I. Forum, “MPI: A Message-Passing Interface Standard
Version 3.0,” 2012.

[2] K. Iglberger, G. Hager, J. Treibig, and U. Rde, “Expres-
sion templates revisited: A performance analysis of current
methodologies.” SIAM J. Scientific Computing, vol. 34, no. 2,
2012.

[3] T. L. Veldhuizen, “Blitz++: The library that thinks it is
a compiler,” in Advances in Software tools for scientific
computing. Springer, 2000, pp. 57–87.

[4] Intel Math Kernel Library. Reference Manual. Santa Clara,
USA: Intel Corporation, 2009.

[5] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with CUDA,” Queue, vol. 6, no. 2, pp.
40–53, 2008.

[6] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems,”
IEEE Des. Test, vol. 12, no. 3, pp. 66–73, 2010.

[7] C. J. Newburn, B. So, Z. Liu, M. D. McCool, A. M. Ghuloum,
S. D. Toit, Z.-G. Wang, Z. Du, Y. Chen, G. Wu, P. Guo, Z. Liu,
and D. Zhang, “Intel’s array building blocks: A retargetable,
dynamic compiler and embedded language.” in CGO. IEEE
Computer Society, 2011, pp. 224–235.

[8] C. Lattner and V. Adve, “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation,” in Pro-
ceedings of the 2004 International Symposium on Code Gen-
eration and Optimization (CGO’04), Palo Alto, California,
Mar 2004.

[9] T. Müller, J. Weidendorfer, and A. Blaszczyk, “Expression
tree evaluation by dynamic code generation - are accelerators
up for the task?” in Parallel Processing (ICPP), 2013 42nd
International Conference on, Oct 2013, pp. 230–239.

[10] K. Fürlinger, C. Glass, A. Knüpfer, J. Tao, D. Hünich,
K. Idrees, M. Maiterth, Y. Mhedheb, and H. Zhou, “DASH:
Data structures and algorithms with support for hierarchical
locality,” in Euro-Par 2014 Workshops (Porto, Portugal),
2014.

[11] H. Zima, B. L. Chamberlain, and D. Callahan, “Parallel pro-
grammability and the Chapel language,” International Journal
on HPC Applications, Special Issue on High Productivity
Languages and Models, vol. 21, no. 3, pp. 291–312, 2007.

[12] F. Bellard, “QEMU, a fast and portable dynamic translator,”
in Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ser. ATEC ’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 41–41.

[13] N. Nethercote and J. Seward, “Valgrind: A framework for
heavyweight dynamic binary instrumentation,” in Proceedings
of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’07. New
York, NY, USA: ACM, 2007, pp. 89–100.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. . Reddi, and K. Hazelwood,
“Pin: Building customized program analysis tools with dy-
namic instrumentation,” in Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’05. New York, NY, USA: ACM,
2005, pp. 190–200.

[15] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary
instrumentation,” in Proceedings of the 10th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools,
ser. PASTE ’11. New York, NY, USA: ACM, 2011, pp. 9–16.

[16] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A
transparent dynamic optimization system,” SIGPLAN Not.,
vol. 35, no. 5, May 2000.

[17] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J.
Eggers, “DyC: An Expressive Annotation-Directed Dynamic
Compiler for C,” in Theoretical Computer Science, 2000.

[18] H.-P. Charles, D. Courouss, V. Lomller, F. Endo, and R. Gau-
guey, “deGoal: a tool to embed dynamic code generators
into applications,” in Compiler Construction, ser. Lecture
Notes in Computer Science, A. Cohen, Ed. Springer Berlin
Heidelberg, 2014, vol. 8409, pp. 107–112.

[19] T. Rompf and M. Odersky, “Lightweight modular staging: A
pragmatic approach to runtime code generation and compiled
dsls,” SIGPLAN Not., vol. 46, no. 2, pp. 127–136, Oct. 2010.

[20] R. Leißa, K. Boesche, S. Hack, R. Membarth, and
P. Slusallek, “Shallow embedding of DSLs via online partial
evaluation,” in Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Generative Programming: Concepts
and Experiences, ser. GPCE 2015. New York, NY, USA:
ACM, 2015, pp. 11–20.

[21] B. Catanzaro, S. A. Kamil, Y. Lee, K. Asanovic, J. Demmel,
K. Keutzer, J. Shalf, K. A. Yelick, A. Fox, B. Catanzaro,
S. Kamil, Y. Lee, J. Demmel, K. Keutzer, J. Shalf, K. Yelick,
and O. Fox, “SEJITS: Getting productivity and performance
with selective embedded JIT specialization,” in In First Work-
shop on Programming models for Emerging Architectures,
2009.

[22] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Si-
mon, and H. Mössenböck, “An intermediate representation
for speculative optimizations in a dynamic compiler,” in
Proceedings of the 7th ACM Workshop on Virtual Machines
and Intermediate Languages, ser. VMIL ’13. New York,
NY, USA: ACM, 2013, pp. 1–10.

