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Outline 

• Hardware 
– ARM multi-core CPUs 
– Calxeda ARM server 

• Software Stack 
– OpenCL, CLRPC, STDCL 
– Distributed task parallel programming model 

• Configurations tested 
• Benchmarks 
• Conclusion and future work 

Presenter
Presentation Notes
This is The 6th Workshop on UnConventional High Performance Computing 2013 (UCHPC 2013) and I’m going to be speaking about a recent study of an ARM-based Calxeda SoC cluster.
We investigate a novel software stack that has some history in heterogeneous computing with GPUs and propose how this new programming model can be used with this unconventional HPC hardware
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ARM CPU Architecture 

• ARM is a family of RISC CPUs targeting low-power and embedded markets. 
• ARM Holdings licenses the IP core to third parties 
• You likely have one in your pocket.  They appear in about 95% of smartphones 

Enterprise ARM Platforms Enterprise x86 Platforms 
“RISC” - reduced complexity ISA “CISC” – specialized ISA 

Power and Energy priority (<5 W) Speed and Performance priority (~100W) 

Lower clock speeds ~1-2 GHz Higher clock speeds ~3 GHz 

Generally four (4) cores per system Eight (8) to 16 core systems 

Low memory per system (up to 4 GB) High memory systems (16-256 GB) 

64-bit Vector Floating Point coprocessor 256-bit SSE and AVX instructions 

Smaller die size (~5 mm2) Larger die size (~100 mm2) adds cost 

Presenter
Presentation Notes
Take comparison with a grain of salt as these values are always changing and meant to be a rough estimate.
All numbers besides power and die size are generally increasing over time.
Intel and AMD are making x86 processors (Atom and Jaguar) that sit somewhere in the middle of the comparison to target new markets (for them).
The platforms are looking more similar than different compared to 5 years ago.
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Calxeda ARM Server 

• Fully populated 2U box contains 48 quad-core SoCs 
– 192 ARM Cortex-A9 cores @ 1.1-1.4 GHz 
– 192 GB DDR3 (1GB/core) 
– Five (5) 10 Gb network links per SoC 
– 900W PSU (usage typically < 300 W) 
– Up to four (4) SATA ports per SoC 

Presenter
Presentation Notes
This platform is designed for independent web operations where I/O, latency, and networking speed are important and do not have a signification computation load.
For example, an Apache web server with a large number of users requires a lot of active cores to serve web pages and data to users.  There isn’t a lot of computation here.
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OpenCL for Parallel Programming 
Heterogeneous Architectures 

• OpenCL™ is an industry standard programming API 
• Issues addressed by OpenCL 

– Distributed memory management 
– Concurrency of data movement and device execution 
– Platform/vendor portability of APIs 

• OpenCL provides ... 
– Platform and runtime layer for managing concurrent 

execution of operations across multiple devices 
– C language extension for programming compute devices  
– Platform/device independent API with broad industry 

support 
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• Alternatives: 
– MPI – Data parallel, not task parallel. Runs on multi-core CPUs and clusters 
– OpenMP – Runs on Symmetric Multiprocessor (SMP), single node 
– CUDA – Similar to OpenCL. Nvidia GPUs only, single node. 

 

Presenter
Presentation Notes
 We needed an API to target a cluster of networked multi-core CPUs
 MPI, OpenMP, and CUDA x86 were possible.  MPI is the only model that fits this hardware.  OpenMP and CUDA lack the network API.
 William Gropp, co-developer of MPI, recently indicated that the data parallel compute paradigm that has worked for the last two decades may not be the best model for the next two decades.
“Changing How Programmers Think about Parallel Programming” webinar (http://learning.acm.org/webinar/gropp_qa.cfm)
 Our group has become accustomed to writing OpenCL software for CPUs, GPUs, and other co-processors using OpenCL
 But OpenCL lacks the network layer for clusters.
 Enter CLRPC
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• The OpenCL API forces natural separation between high-level functionality (host 
code) and heavy compute tasks (kernel)  

• OpenCL RPC (Remote Procedure Call) can extend the host code transparently 
to access the compute resources across networked platforms 

• OpenCL RPC provides access to larger pool of OpenCL devices from single 
application 

• This is the inspiration for CLRPC 

CLRPC: Basic Idea 

Host 

Server 1 Server 2 

Presenter
Presentation Notes
OpenCL, as an API, detaches data and computation from the host device and inadvertently creates a network-based asynchronous computation distribution model.  CLRPC is the implementation of that network distribution of data and work.
There are two components to CLRPC.  The libclrpc library contains the same symbols as the OpenCL library and is used as a layer to intercept calls and data to the OpenCL routines and send them to networked nodes.
The clrpcd daemon runs as a service on a compute node and forwards those network RPC calls to the corresponding OpenCL library.  The return codes and results are relayed back to the host node.

ADD DESCRIPTION/LABELS ON GRAPHIC
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CLRPC 

• CLRPC: Remote Procedure Call (RPC) implementation of OpenCL 
– OpenCL capabilities of a node exported to the network 
– Transparent layer to developer 
– OpenCL code doesn’t need to be modified 
– Devices still separated by OpenCL platform concept 

• Programmer needs a separate OpenCL context per CLRPC server 
– Host able to execute OpenCL program even if it lacks any remote OpenCL 

implementation or compute device 
• CLRPC Daemon (clrpcd) runs in background on a node and forwards CLRPC 

commands to local OpenCL library 
– Daisy chaining of networked nodes as a means to create tiered execution to 

possibly reduce bottlenecks 
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CLRPC: Server-Side 

• Compute resources are exported using a CLRPC server (clrpcd) 
• clrpcd is run in the background on each node, for example: 

 
 clrpcd -a 192.168.1.36 
 
• The server will listen for CLRPC requests on the default port, and perform all 

host API calls on behalf of the client 
• On client-side the available OpenCL platforms can be augmented with one or 

more clrpcd servers identified by IP address and port 
 

• FAQ: Does the server just have “wrappers” for the OpenCL API calls? 
– In a sense, yes, but there are non-trivial issues that must be resolved, mostly 

related to implicitly asynchronous behaviors expected from within the 
OpenCL client applications 

– A naive implementation that “blocked on everything” would be useless 
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STDCL 

• STDCL™ (STandard Compute Layer) as an interface to OpenCL 

• Lightweight UNIX-style C API interface for HPC 

• Similar simplicity and features to CUDA, yet more portable 

• Creates standard OpenCL contexts: stdcpu, stdgpu, stddev, stdnpu 

• The context stdnpu, is unique in that it is a “super context” of networked OpenCL 

devices through CLRPC 

• stdnpu context ignores platform details and presents to user all available devices 

across multiple platforms 

 

Presenter
Presentation Notes
IMPROVE SPACING
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STDCL 

• Without STDCL stdnpu, directing devices requires management: 

– For each Node 

• For each OpenCL Platform 

– For each OpenCL Context 

» For each OpenCL Command Queue 

» For each OpenCL Device 

• STDCL stdnpu abstracts these layers so code becomes: 

– For each OpenCL Device 

• Reduces source code complexity significantly with very little overhead 
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STDCL 

• Concurrent execution of an OpenCL kernel on multiple networked devices 

// Loop over all networked devices 
for(idev = 0; idev < ndev; idev++)  
   clforka(stdnpu, idev, krn, &ndr, CL_EVENT_NOWAIT, a, b, c); 
 
// Wait on each device in turn 
for(idev = 0; idev < ndev; idev++)  
   clwait(stdnpu, idev, krn, 0); 

idev=0,1,2 idev=3,4,5 idev=6,7,8 

Host program runs on a single host 

Compute kernel runs on 
each device concurrently 
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COPRTHR SDK Software Stack 

• CO-PRocessing THReads™ (COPRTHR™) SDK 
• Write STDCL code once, run on any architecture, multiple devices and nodes 
• Includes OpenCL for x86 and ARM multi-core CPUs, Adapteva Epiphany RISC 

Arrays, and Xeon Phi (beta). ARM has no vendor-supplied implementation 
• COPRTHR SDK allows for the most portable source code for our group 
• Besides those listed above, we’ve investigated AMD, Nvidia, and Adreno GPUs 
• Primary support for Linux/BSD and some support for Android and Windows 

STDCL 

CLRPC 

OpenCL 

X86 CPUs Xeon Phi ARM CPUs Adapteva 
Epiphany 

Third-Party 
OpenCL 

AMD 
GPUs 

Nvidia 
GPUs 

 
… 
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Programming Model 

• We are investigating a task-parallel programming model for distributing work 
across a cluster of Calxeda nodes based on STDCL 

• A dedicated host node distributes work via OpenCL/STDCL calls and treats 
networked nodes as OpenCL compute devices 

• Host may also use it’s own resources for compute 

Calxeda 
SoC 

Compute 
Device 

Host 
Node 

Compute 
Device 

Compute 
Device 

Compute 
Device 

… 

Presenter
Presentation Notes
This task parallel model has obvious deficiencies over prior data parallel models like MPI.  For example, the host-node becomes a bottleneck if a lot of data must pass through the host.
However, with little or no data dependencies and pure task parallelism, the bottlenecks to not limit the ability for the host to schedule work.
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Configurations Tested 

• Access to the Calxeda box was provided by Exxact Corporation 
• At the time, five (5) quad-core nodes were available for use 

– Running Ubuntu 12.10 
– GCC 4.7 and common utilities for a Linux development platform 
– Includes baseboard management controller (BMC) utility for measuring and 

recording power of individual nodes within the system 
• Tested configurations included: 

– OpenCL direct 
– CLRPC remote 
– CLRPC local (special case) 
– stdnpu 

Presenter
Presentation Notes
We had access to a single 2U box with 5 quad-core nodes.
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N-Body Benchmark 

• We chose a gravitational n-body benchmark to flex 
the architecture 
– O(N2) compute and O(N) communication 
– Particle positions generate a force on all other 

particles 
– Accumulated acceleration changes particle 

velocity at each step 
• Algorithm has two main steps: 

– Calculate total force on each particle  
– Update particle position/velocity over some 

small time-step (Newtonian dynamics) 
– Contains multiply, add, subtract, divide, and 

square root operations 
• Entire (unoptimized) algorithm can be written in C 

with a few dozen lines of code 
 

rj - ri 

| rj – ri |
3 mj Σ 

i ≠ j 

fi = 
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Benchmarks 
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Performance for N-Body Software Configuration 

Presenter
Presentation Notes
This is the performance of a compute-saturated n-body benchmark when varying the software stack configuration
By running CLRPC on the node (CLRPC Local) and using it’s cores as a compute device, there is a fair amount of overhead that effects performance
By running CLRPC on a host node and using another node as a compute device (CLRPC Remote), the management overhead and computation are separated and there is much less performance lost due to overhead as you can see by comparing to running OpenCL Directly on the ARM cores without passing through CLRPC.
The OpenCL Auto-Tuning result is presented here as the maximum performance possible on this algorithm using a modified code that sweeps through a five-dimensional search space of code permutations including loop unrolling, cache blocking, instruction vectorization, and parallelism width.
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Benchmarks 

• A single node tells a story 

Presenter
Presentation Notes
Here, we can see that when the processor is give enough work (N>=4096) it becomes compute bound and the overhead due to running CLRPC on top of OpenCL disappears into the noise.
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Benchmarks 

• BDT N-Body Benchmarks on a Calxeda ARM Server 
– Scaling over 4 Quad-Core ARM SoCs Using a Single STDCL Context 
– Host is used for compute at 16 cores. This leads to performance issues 

Line indicates perfect scaling 

Presenter
Presentation Notes
In this case ...
COLOR FAILED US!  WHAT HAPPENED TO THE COLORS?  I THOUGHT YOU HAD THE DATA FOR THIS ONE.
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Power 

• Idle power is a significant portion of load power (~80%) 
• This is almost the opposite case for x86 servers where the CPU under load 

consumes a significant portion of the power budget 

Presenter
Presentation Notes
The Calxeda platform includes a baseboard management controller (BMC) to measure power on individual nodes.  It is a summation of all of the power consumption from the ARM-based SoC, DDR3 memory, storage disk, and networking.
As you can see from the graph, idle power is a significant portion of load power (~80%).  This is almost the opposite case for x86 servers where the CPU under load consumes a significant portion of the power budget.
It’s not clear how one should calculate energy efficiency from this.  Do you use the total system power, or count only the SoC as in the case of an optimized HPC platform running without local storage?
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Conclusion and Future Work 

• First effort to investigate OpenCL on Calxeda ARM server 

• Novel OpenCL-based parallel programming model with abstraction to access 

networked compute devices 

• Empirical results of n-body including auto-tuning code 

• Power measurements during benchmarking insufficient to determine power 

efficiency rank compared to x86-based machines 

• Future work includes investigating scaling on a much larger number of cores 
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References and 
Acknowledgments 

• COPRTHR SDK: 
– https://github.com/browndeer/coprthr.git 

• Exxact Corporation Calxeda Platform: 
– http://exxactcorp.com/index.php/solution/solu_list/59 

• Khronos OpenCL: 
– http://www.khronos.org/opencl/ 

* Names used in this presentation are for identification purposes only and may be trademarks of their respective 
owners.  
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