
U.S. Army Research, Development and Engineering Command

Song Park, Dale Shires
Computational Sciences Division
U.S. Army Research Laboratory

Investigation of Parallel Programmability
and Performance of a Calxeda

ARM Server Using OpenCL

James Ross, Jordan Ruloff
Dynamics Research Corp.

David Richie
Brown Deer Technology

Lori Pollock
University of Delaware

UnConventional High Performance Computing 2013 (UCHPC 2013)

Approved for Public Release // Distribution Unlimited

2 of 21

Outline

• Hardware
– ARM multi-core CPUs
– Calxeda ARM server

• Software Stack
– OpenCL, CLRPC, STDCL
– Distributed task parallel programming model

• Configurations tested
• Benchmarks
• Conclusion and future work

Presenter
Presentation Notes
This is The 6th Workshop on UnConventional High Performance Computing 2013 (UCHPC 2013) and I’m going to be speaking about a recent study of an ARM-based Calxeda SoC cluster.
We investigate a novel software stack that has some history in heterogeneous computing with GPUs and propose how this new programming model can be used with this unconventional HPC hardware

3 of 21

ARM CPU Architecture

• ARM is a family of RISC CPUs targeting low-power and embedded markets.
• ARM Holdings licenses the IP core to third parties
• You likely have one in your pocket. They appear in about 95% of smartphones

Enterprise ARM Platforms Enterprise x86 Platforms
“RISC” - reduced complexity ISA “CISC” – specialized ISA

Power and Energy priority (<5 W) Speed and Performance priority (~100W)

Lower clock speeds ~1-2 GHz Higher clock speeds ~3 GHz

Generally four (4) cores per system Eight (8) to 16 core systems

Low memory per system (up to 4 GB) High memory systems (16-256 GB)

64-bit Vector Floating Point coprocessor 256-bit SSE and AVX instructions

Smaller die size (~5 mm2) Larger die size (~100 mm2) adds cost

Presenter
Presentation Notes
Take comparison with a grain of salt as these values are always changing and meant to be a rough estimate.
All numbers besides power and die size are generally increasing over time.
Intel and AMD are making x86 processors (Atom and Jaguar) that sit somewhere in the middle of the comparison to target new markets (for them).
The platforms are looking more similar than different compared to 5 years ago.

4 of 21

Calxeda ARM Server

• Fully populated 2U box contains 48 quad-core SoCs
– 192 ARM Cortex-A9 cores @ 1.1-1.4 GHz
– 192 GB DDR3 (1GB/core)
– Five (5) 10 Gb network links per SoC
– 900W PSU (usage typically < 300 W)
– Up to four (4) SATA ports per SoC

Presenter
Presentation Notes
This platform is designed for independent web operations where I/O, latency, and networking speed are important and do not have a signification computation load.
For example, an Apache web server with a large number of users requires a lot of active cores to serve web pages and data to users. There isn’t a lot of computation here.

5 of 21

OpenCL for Parallel Programming
Heterogeneous Architectures

• OpenCL™ is an industry standard programming API
• Issues addressed by OpenCL

– Distributed memory management
– Concurrency of data movement and device execution
– Platform/vendor portability of APIs

• OpenCL provides ...
– Platform and runtime layer for managing concurrent

execution of operations across multiple devices
– C language extension for programming compute devices
– Platform/device independent API with broad industry

support

Host
Processor

Memory

PCIe

Co-processor

Memory
Co-processor

Memory
Co-processor

Memory

• Alternatives:
– MPI – Data parallel, not task parallel. Runs on multi-core CPUs and clusters
– OpenMP – Runs on Symmetric Multiprocessor (SMP), single node
– CUDA – Similar to OpenCL. Nvidia GPUs only, single node.

Presenter
Presentation Notes
 We needed an API to target a cluster of networked multi-core CPUs
 MPI, OpenMP, and CUDA x86 were possible. MPI is the only model that fits this hardware. OpenMP and CUDA lack the network API.
 William Gropp, co-developer of MPI, recently indicated that the data parallel compute paradigm that has worked for the last two decades may not be the best model for the next two decades.
“Changing How Programmers Think about Parallel Programming” webinar (http://learning.acm.org/webinar/gropp_qa.cfm)
 Our group has become accustomed to writing OpenCL software for CPUs, GPUs, and other co-processors using OpenCL
 But OpenCL lacks the network layer for clusters.
 Enter CLRPC

6 of 21

• The OpenCL API forces natural separation between high-level functionality (host
code) and heavy compute tasks (kernel)

• OpenCL RPC (Remote Procedure Call) can extend the host code transparently
to access the compute resources across networked platforms

• OpenCL RPC provides access to larger pool of OpenCL devices from single
application

• This is the inspiration for CLRPC

CLRPC: Basic Idea

Host

Server 1 Server 2

Presenter
Presentation Notes
OpenCL, as an API, detaches data and computation from the host device and inadvertently creates a network-based asynchronous computation distribution model. CLRPC is the implementation of that network distribution of data and work.
There are two components to CLRPC. The libclrpc library contains the same symbols as the OpenCL library and is used as a layer to intercept calls and data to the OpenCL routines and send them to networked nodes.
The clrpcd daemon runs as a service on a compute node and forwards those network RPC calls to the corresponding OpenCL library. The return codes and results are relayed back to the host node.

ADD DESCRIPTION/LABELS ON GRAPHIC

7 of 21

CLRPC

• CLRPC: Remote Procedure Call (RPC) implementation of OpenCL
– OpenCL capabilities of a node exported to the network
– Transparent layer to developer
– OpenCL code doesn’t need to be modified
– Devices still separated by OpenCL platform concept

• Programmer needs a separate OpenCL context per CLRPC server
– Host able to execute OpenCL program even if it lacks any remote OpenCL

implementation or compute device
• CLRPC Daemon (clrpcd) runs in background on a node and forwards CLRPC

commands to local OpenCL library
– Daisy chaining of networked nodes as a means to create tiered execution to

possibly reduce bottlenecks

8 of 21

CLRPC: Server-Side

• Compute resources are exported using a CLRPC server (clrpcd)
• clrpcd is run in the background on each node, for example:

 clrpcd -a 192.168.1.36

• The server will listen for CLRPC requests on the default port, and perform all

host API calls on behalf of the client
• On client-side the available OpenCL platforms can be augmented with one or

more clrpcd servers identified by IP address and port

• FAQ: Does the server just have “wrappers” for the OpenCL API calls?
– In a sense, yes, but there are non-trivial issues that must be resolved, mostly

related to implicitly asynchronous behaviors expected from within the
OpenCL client applications

– A naive implementation that “blocked on everything” would be useless

9 of 21

STDCL

• STDCL™ (STandard Compute Layer) as an interface to OpenCL

• Lightweight UNIX-style C API interface for HPC

• Similar simplicity and features to CUDA, yet more portable

• Creates standard OpenCL contexts: stdcpu, stdgpu, stddev, stdnpu

• The context stdnpu, is unique in that it is a “super context” of networked OpenCL

devices through CLRPC

• stdnpu context ignores platform details and presents to user all available devices

across multiple platforms

Presenter
Presentation Notes
IMPROVE SPACING

10 of 21

STDCL

• Without STDCL stdnpu, directing devices requires management:

– For each Node

• For each OpenCL Platform

– For each OpenCL Context

» For each OpenCL Command Queue

» For each OpenCL Device

• STDCL stdnpu abstracts these layers so code becomes:

– For each OpenCL Device

• Reduces source code complexity significantly with very little overhead

11 of 21

STDCL

• Concurrent execution of an OpenCL kernel on multiple networked devices

// Loop over all networked devices
for(idev = 0; idev < ndev; idev++)
 clforka(stdnpu, idev, krn, &ndr, CL_EVENT_NOWAIT, a, b, c);

// Wait on each device in turn
for(idev = 0; idev < ndev; idev++)
 clwait(stdnpu, idev, krn, 0);

idev=0,1,2 idev=3,4,5 idev=6,7,8

Host program runs on a single host

Compute kernel runs on
each device concurrently

12 of 21

COPRTHR SDK Software Stack

• CO-PRocessing THReads™ (COPRTHR™) SDK
• Write STDCL code once, run on any architecture, multiple devices and nodes
• Includes OpenCL for x86 and ARM multi-core CPUs, Adapteva Epiphany RISC

Arrays, and Xeon Phi (beta). ARM has no vendor-supplied implementation
• COPRTHR SDK allows for the most portable source code for our group
• Besides those listed above, we’ve investigated AMD, Nvidia, and Adreno GPUs
• Primary support for Linux/BSD and some support for Android and Windows

STDCL

CLRPC

OpenCL

X86 CPUs Xeon Phi ARM CPUs Adapteva
Epiphany

Third-Party
OpenCL

AMD
GPUs

Nvidia
GPUs

…

13 of 21

Programming Model

• We are investigating a task-parallel programming model for distributing work
across a cluster of Calxeda nodes based on STDCL

• A dedicated host node distributes work via OpenCL/STDCL calls and treats
networked nodes as OpenCL compute devices

• Host may also use it’s own resources for compute

Calxeda
SoC

Compute
Device

Host
Node

Compute
Device

Compute
Device

Compute
Device

…

Presenter
Presentation Notes
This task parallel model has obvious deficiencies over prior data parallel models like MPI. For example, the host-node becomes a bottleneck if a lot of data must pass through the host.
However, with little or no data dependencies and pure task parallelism, the bottlenecks to not limit the ability for the host to schedule work.

14 of 21

Configurations Tested

• Access to the Calxeda box was provided by Exxact Corporation
• At the time, five (5) quad-core nodes were available for use

– Running Ubuntu 12.10
– GCC 4.7 and common utilities for a Linux development platform
– Includes baseboard management controller (BMC) utility for measuring and

recording power of individual nodes within the system
• Tested configurations included:

– OpenCL direct
– CLRPC remote
– CLRPC local (special case)
– stdnpu

Presenter
Presentation Notes
We had access to a single 2U box with 5 quad-core nodes.

15 of 21

N-Body Benchmark

• We chose a gravitational n-body benchmark to flex
the architecture
– O(N2) compute and O(N) communication
– Particle positions generate a force on all other

particles
– Accumulated acceleration changes particle

velocity at each step
• Algorithm has two main steps:

– Calculate total force on each particle
– Update particle position/velocity over some

small time-step (Newtonian dynamics)
– Contains multiply, add, subtract, divide, and

square root operations
• Entire (unoptimized) algorithm can be written in C

with a few dozen lines of code

rj - ri

| rj – ri |
3 mj Σ

i ≠ j

fi =

16 of 21

Benchmarks

840

980 983

1088

0

200

400

600

800

1000

1200

CLRPC Local CLRPC Remote OpenCL Direct OpenCL Auto-Tuning

Pe
rf

or
m

an
ce

 (M
FL

O
PS

)

Performance for N-Body Software Configuration

Presenter
Presentation Notes
This is the performance of a compute-saturated n-body benchmark when varying the software stack configuration
By running CLRPC on the node (CLRPC Local) and using it’s cores as a compute device, there is a fair amount of overhead that effects performance
By running CLRPC on a host node and using another node as a compute device (CLRPC Remote), the management overhead and computation are separated and there is much less performance lost due to overhead as you can see by comparing to running OpenCL Directly on the ARM cores without passing through CLRPC.
The OpenCL Auto-Tuning result is presented here as the maximum performance possible on this algorithm using a modified code that sweeps through a five-dimensional search space of code permutations including loop unrolling, cache blocking, instruction vectorization, and parallelism width.

17 of 21

Benchmarks

• A single node tells a story

Presenter
Presentation Notes
Here, we can see that when the processor is give enough work (N>=4096) it becomes compute bound and the overhead due to running CLRPC on top of OpenCL disappears into the noise.

18 of 21

Benchmarks

• BDT N-Body Benchmarks on a Calxeda ARM Server
– Scaling over 4 Quad-Core ARM SoCs Using a Single STDCL Context
– Host is used for compute at 16 cores. This leads to performance issues

Line indicates perfect scaling

Presenter
Presentation Notes
In this case ...
COLOR FAILED US! WHAT HAPPENED TO THE COLORS? I THOUGHT YOU HAD THE DATA FOR THIS ONE.

19 of 21

Power

• Idle power is a significant portion of load power (~80%)
• This is almost the opposite case for x86 servers where the CPU under load

consumes a significant portion of the power budget

Presenter
Presentation Notes
The Calxeda platform includes a baseboard management controller (BMC) to measure power on individual nodes. It is a summation of all of the power consumption from the ARM-based SoC, DDR3 memory, storage disk, and networking.
As you can see from the graph, idle power is a significant portion of load power (~80%). This is almost the opposite case for x86 servers where the CPU under load consumes a significant portion of the power budget.
It’s not clear how one should calculate energy efficiency from this. Do you use the total system power, or count only the SoC as in the case of an optimized HPC platform running without local storage?

20 of 21

Conclusion and Future Work

• First effort to investigate OpenCL on Calxeda ARM server

• Novel OpenCL-based parallel programming model with abstraction to access

networked compute devices

• Empirical results of n-body including auto-tuning code

• Power measurements during benchmarking insufficient to determine power

efficiency rank compared to x86-based machines

• Future work includes investigating scaling on a much larger number of cores

21 of 21

References and
Acknowledgments

• COPRTHR SDK:
– https://github.com/browndeer/coprthr.git

• Exxact Corporation Calxeda Platform:
– http://exxactcorp.com/index.php/solution/solu_list/59

• Khronos OpenCL:
– http://www.khronos.org/opencl/

* Names used in this presentation are for identification purposes only and may be trademarks of their respective
owners.

We wish to thank Exxact Corporation for providing
access to their Calxeda based ARM server
platform

www.exxactcorp.com

https://github.com/browndeer/coprthr.git
http://exxactcorp.com/index.php/solution/solu_list/59
http://www.khronos.org/opencl/

	Slide Number 1
	Outline
	ARM CPU Architecture
	Calxeda ARM Server
	OpenCL for Parallel Programming Heterogeneous Architectures
	CLRPC: Basic Idea
	CLRPC
	CLRPC: Server-Side
	STDCL
	STDCL
	STDCL
	COPRTHR SDK Software Stack
	Programming Model
	Configurations Tested
	N-Body Benchmark
	Benchmarks
	Benchmarks
	Benchmarks
	Power
	Conclusion and Future Work
	References and Acknowledgments

