Iterative Solution of Linear Systems in Electromagnetics (and not only): Experiences with CUDA

D. De Donno, A. Esposito, G. Monti, L. Tarricone

Innovation Engineering Department
University of Salento - Lecce - Italy

August 30st, 2010
Outline

- Background on CEM issues
- Motivations and objectives
- Design and implementation
- Experimental results
- Conclusions and ongoing work
One of the fundamental steps of numerical computing is the ability to solve linear systems:

\[Ax = b \]

These systems arise very frequently in scientific computing, from finite difference or finite element approximations to partial differential equations.

For example, in *Computational ElectroMagnetics* (CEM) the process of modeling the interaction of electromagnetic fields with physical objects and the environment give rise to linear systems with large number of unknowns.
In CEM a key role is played by the Method of Moments (MoM) which transforms the integral-differential Maxwell's equations into a linear system of algebraic equations.

\[Z \cdot I = V \]

\(Z \) is the MoM impedance matrix containing the complex reaction terms between basis functions.

In large EM problems \(Z \) can be reduced to an unstructured and significantly sparse matrix without affecting the numerical accuracy.

ITERATIVE SOLVERS (i.e. CG, BiCG) are preferred in these cases.
Objective

We implemented a **Bi-Conjugate Gradient (BiCG)** iterative solver for GPUs. It tackles **unstructured sparse matrices** with **double precision complex data**.

Recently, cheap and powerful **graphics processors** (GPU) are emerging as a valide alternative to supercomputers and computational grids.

Our implementation takes advantage from **CUDA**, a standard C language extension for parallel application development on **NVIDIA** GPUs.

A CUDA application consists of **SPMD** computations (**kernels**) performed by **threads** running in parallel on the GPU **streaming multiprocessors** (SMs).
The BiCG algorithm (1/2)

BiCG is a generalization of CG (Conjugate Gradient) method.

CG method
- real symmetric matrices
- complex Hermitian matrices

BiCG method
- real non-symmetric matrices
- complex non-Hermitian matrices

In the initialization phase of BiCG, the following variables are defined:

- \(r_0 = b - Ax_0 \)
- \(\bar{r}_0 = r_0^* \) \text{Residual and bi-residual}

- \(p_0 = r_0 \)
- \(\bar{p}_0 = p_0^* \) \text{Direction and bi-direction}

- \(d_0 = M^{-1} \cdot r_0 \)
- \(\bar{d}_0 = M^{-1} \cdot \bar{r}_0^* \) \text{Pre-conditioned residual and bi-residual}

- \(\rho_0 = d_0^T \cdot \bar{r}_0^* \) \text{Initial residual error}
The BiCG algorithm (2a/2)

In the BiCG main loop, the following steps are repeated for each iteration:

1. **Calculate the step length parameter and form the new solution estimate.**

STEP 1

\[
q_i = A \cdot p_{i-1} \\
\bar{q}_i = A^H \cdot \bar{p}_{i-1} \\
\alpha_i = \frac{\rho_{i-1}}{p_{i-1} \cdot q_i} \\
x_i = x_{i-1} + \alpha_i \cdot p_{i-1}
\]
In the BiCG main loop, the following steps are repeated for each iteration:

2. Update residual and bi-residual, with and without preconditioning.

STEP 2

\[
\begin{align*}
 r_i &= r_{i-1} + \alpha_i \cdot q_i \\
 \overline{r}_i &= \overline{r}_{i-1} + \alpha_i \cdot \overline{q}_i \\
 d_i &= M^{-1} \cdot r_i \\
 \overline{d}_i &= M^{-1} \cdot \overline{r}_i
\end{align*}
\]
In the BiCG main loop, the following steps are repeated for each iteration:

3. **Calculate the residual error ρ and the bi-conjugacy coefficient β.**

STEP 3

\[
\rho_i = d_i^T \cdot \bar{r}_i^* \\
\beta_i = \frac{\rho_i}{\rho_{i-1}}
\]
The BiCG algorithm (2d/2)

In the BiCG main loop, the following steps are repeated for each iteration:

4. **Update next direction and bi-direction vectors.**

STEP 4

\[
p_i = d_i + \beta_i \cdot p_{i-1}
\]

\[
\bar{p}_i = \bar{d}_i + \beta_i \cdot \bar{p}_{i-1}
\]

Iteration is continued till the convergence criterion is satisfied:

\[
\frac{\|r_i\|_2}{\|b\|_2} \leq \varepsilon
\]

Values of \(\varepsilon\) commonly used are 10^{-6} / 10^{-7}.
In the GPU-enabled BiCG algorithm, the main loop execution is controlled on the host side, whereas the computations inside are performed on the GPU.

INITIALIZATION consists in:
- reading and storing the system matrix in a given sparse format;
- allocating data structures on the GPU and calculating BiCG initial variables.

BiCG MAIN LOOP consists of the iterative invocation of parallel CUDA kernels performing the BiCG operations.

FINALIZATION consists in retrieving final results from GPU global memory.
Four basic CUDA kernels are enough to completely describe the BiCG main loop:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
<th>FLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpMV</td>
<td>Sparse matrix-vector product</td>
<td>$8 \cdot nnz$</td>
</tr>
<tr>
<td>Dot product</td>
<td>Scalar product of two vectors</td>
<td>$8 \cdot N$</td>
</tr>
<tr>
<td>E-w product</td>
<td>Element-wise product of two vectors</td>
<td>$6 \cdot N$</td>
</tr>
<tr>
<td>axpy</td>
<td>$ax+y$ (a scalar, x and y vectors)</td>
<td>$8 \cdot N$</td>
</tr>
</tbody>
</table>

Recall that we are considering non-symmetric and non-Hermitian sparse matrices with N rows and nnz non-zero complex coefficients.
SpMV – this CUDA kernel implements the Bell and Garland algorithm (*) which is the best performing code currently available for solving sparse matrix-vector product.

\[
q_i = A \cdot p_{i-1} \\
\bar{q}_i = A^H \cdot \bar{p}_{i-1}
\]

Supported sparse matrix formats
- **CRS** (Compressed Row Storage)
- **HYB** (hybrid ELLpack-COOordinate format)

Main modifications to the original code
- double precision complex matrix support
- CUDA grid, register number, shared and texture memory exploitation optimized for double precision complex data.

Dot product – cuBLAS dot function doesn’t support double precision complex data, therefore we implemented it from scratch. To maximize performance we also adapted Mark Harris’ parallel reduction code (**) as the core of our code.

\[
\alpha_i = \frac{\rho_{i-1}}{p_{i-1} \cdot q_i}
\]

\[
\rho_i = d_i^T \cdot \overline{r}_i^*
\]

E.w. product and axpy – also in this case, the cuBLAS function provided by CUDA doesn’t support double precision complex data, therefore we implemented it from scratch.

- We defined a CUDA grid of 192 blocks, each with 128 threads, to fully exploit GPU’s resources.

- Threads load data from GPU global memory and perform calculations in parallel.

- We optimized global memory access pattern to obtain completely coalesced loads and stores, thus minimizing latency.

\[
\begin{align*}
d_i &= M^{-1} \cdot r_i \\
\overline{d}_i &= M^{-1} \cdot \overline{r}_i \\
x_i &= x_{i-1} + \alpha_i \cdot p_{i-1} \\
r_i &= r_{i-1} + \alpha_i \cdot q_i \\
\overline{r}_i &= \overline{r}_{i-1} + \alpha_i \cdot \overline{q}_i \\
p_i &= d_i + \beta_i \cdot p_{i-1} \\
\overline{p}_i &= \overline{d}_i + \beta_i \cdot \overline{p}_{i-1}
\end{align*}
\]
Optimization strategies

In design and implementation of CUDA kernels we adopted the following optimization strategies:

- CUDA on-chip *shared memory exploitation* for fast memory accesses;
- *register usage* optimization;
- *loop unrolling*;
- *texture memory exploitation* for caching data that are spatially closed together;
- *built-in arrays* to store complex data thus maximizing aligned memory spaces;
- optimization of *thread block dimension* to maximize multiprocessor occupancy.
We tested our GPU-enabled BiCG solver on linear systems whose matrices were obtained:

1. from the application of the MoM to the design of EM circuits;
2. from the “University of Florida Sparse Matrix Collection”.

The experimentation process was carried out on the following platform:

<table>
<thead>
<tr>
<th>HARDWARE configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU: nVIDIA GeForce GTX 260, 24 SMs (192 cores), 896 MB of GDDR3 SDRAM</td>
</tr>
<tr>
<td>CPU: Intel Core2 Quad Q9550 @ 2.83 GHz, 4 GB of RAM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOFTWARE configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CUDA v. 2.3 with 190.53 driver optimized for Ubuntu 9.10 32-bit O.S.</td>
</tr>
<tr>
<td>• ATLAS v. 3.6 BLAS library</td>
</tr>
</tbody>
</table>
As to EM matrices derived from MoM, they concern the design of branch-line couplers in microstrip technology, which are four ports devices widely adopted in microwave and millimetre-wave applications like power dividers and combiners.

More specifically, the analyzed layout consists of two branch-line couplers connected by means of a 360° microstrip line and operating in the 2.5-3.5 GHz frequency band.
The figure below shows the convergence times of the sequential (on CPU) and parallel (on GPU) BiCG algorithm when varying the number of system unknowns, for two different sparse matrix storage formats (HYB and CRS).

The desired matrix sparsity pattern was obtained by mean of a thresholding operation. We kept the percentage of non-zero elements to about 5% of the total number of entries while maintaining a good accuracy of the final solution.

The adopted BiCG stopping criterion:

\[
\frac{\|r^i\|_2}{\|b\|_2} \leq 10^{-7}
\]
In the figure below we show BiCG performance in terms of number of floating point operations (FLOPs) per second.

Achieved speed-ups are higher when matrix dimension allows for an optimum exploitation of hardware resources. CRS has the maximum benefits from GPU parallelization, achieving a speed-up of almost 30.
In all EM matrices we analyzed, CRS format always produces faster results because of the high variability of the non-zero number per row.

As figure shows, the number of non-zeros per row varies widely in typical EM-MoM matrices, so CRS performs better than HYB. Indeed, HYB storage format is suitable when the non-zero distribution is quite compact.
In order to demonstrate the validity of our GPU-enabled BiCG implementation, we conducted some tests on sparse matrices taken from “The University of Florida Sparse Matrix Collection“.

<table>
<thead>
<tr>
<th>ID.</th>
<th>GROUP</th>
<th>NAME</th>
<th>SIZE</th>
<th>Non-zeros</th>
<th>Kind of problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bindel</td>
<td>ted_AB</td>
<td>10605²</td>
<td>522387</td>
<td>thermal</td>
</tr>
<tr>
<td>2</td>
<td>Sinclair</td>
<td>3Dspectralwave2</td>
<td>292008²</td>
<td>12935272</td>
<td>materials</td>
</tr>
<tr>
<td>3</td>
<td>Rost</td>
<td>RFdevice</td>
<td>74104²</td>
<td>365580</td>
<td>semiconductor device</td>
</tr>
<tr>
<td>4</td>
<td>QCD</td>
<td>conf6_0-8x8-80</td>
<td>49152²</td>
<td>1926928</td>
<td>chemistry</td>
</tr>
<tr>
<td>5</td>
<td>Puri</td>
<td>ABACUS_shell_md</td>
<td>23412²</td>
<td>218484</td>
<td>model reduction</td>
</tr>
<tr>
<td>6</td>
<td>Lee</td>
<td>fem_hifreq_circuit</td>
<td>491100²</td>
<td>20239237</td>
<td>electromagnetic</td>
</tr>
<tr>
<td>7</td>
<td>Kim</td>
<td>kim2</td>
<td>456976²</td>
<td>11330020</td>
<td>2D/3D mesh</td>
</tr>
<tr>
<td>8</td>
<td>FreeFieldTech.</td>
<td>mono_500Hz</td>
<td>169410²</td>
<td>5033796</td>
<td>acoustic</td>
</tr>
<tr>
<td>9</td>
<td>Dehghani</td>
<td>light_in_tissue</td>
<td>29282²</td>
<td>406084</td>
<td>electromagnetic</td>
</tr>
<tr>
<td>10</td>
<td>Lee</td>
<td>fem_filter</td>
<td>74062²</td>
<td>1731206</td>
<td>electromagnetic</td>
</tr>
</tbody>
</table>

We identified ten complex sparse matrices, belonging to different research areas and exhibiting different size, sparsity pattern and number of non-zeros.
The figure below shows the performance obtained in terms of number of floating point operations per second. In the worst case the achieved speed-up is about 10, while at best we obtained 55 with 15 GFlops/s for GPU-enabled BiCG.

As the number of non-zeros per row was substantially constant for all the chosen matrices, the HYB format performed better than the CRS in all cases.
Conclusions and ongoing work

- In this work, the achievement of peak-performance for EM solvers through the use of the inexpensive and powerful GPUs has been investigated.
- Taking advantage from CUDA library, we implemented a BiCG algorithm which tackles unstructured sparse matrices with double precision complex data and manages two sparse matrix formats.
- It has been tested on several research area problems. Results in terms of convergence behaviour and GPU vs. CPU performance have been provided as a validation and assessment of solver efficiency.

As further improvements to our work we plan to:
1. develop and test other sparse matrix formats suitable for EM-MoM problems;
2. integrate complex and well known pre-conditioners in our BiCG algorithm;
3. compare our code with efficient BiCG solvers adopting Intel MKL BLAS library on multi-core architectures;
4. hybridize our BiCG code to support together multi-GPU and multi-core CPUs.
Contacts

Danilo De Donno
danilo.dedonno@unisalento.it

Alessandra Esposito
alessandra.esposito@unisalento.it

Giuseppina Monti
giuseppina.monti@unisalento.it

Luciano Tarricone
luciano.tarricone@unisalento.it

www.electromagnetics.unile.it